
4 CROSSTALK The Journal of Defense Software Engineering May/June 2009

This article is based on the current
work done on a project at Hill Air

Force Base, which is based on the Team
Software ProcessSM (TSPSM) practices in
the CMMI® Level 5 organization. One of
the requirements of our customer is that
the project should use a model-driven
design UML toolset, namely Rational
Rose RealTime. This project is tasked with
the design and development of a real-time
control system based on C++ auto-gener-
ated code. In addition, the project selected
to use the Tilcon Interface Development
Suite (IDS) in order to rapidly and effi-
ciently create graphical interfaces for the
real-time control system that generates
stunning displays to the operators of the
system at a fraction of the time or exper-
tise otherwise needed.

Overview of UML
The focus of UML is to model systems
using object-oriented concepts and
methodology. UML consists of a set of
model elements that standardize the
design description. These elements
include a number of fundamental basic
model elements and modeling concepts, in
addition to views that allow designers to
examine a design from different perspec-
tives and diagrams to illustrate the rela-
tionships among model elements.

Several views—such as Use Case View,
Logical View, Component View, Concur-
rency View, and Deployment View—cre-
ate a complete description of the system
design. Within each view, an organized set
of diagrams and other model elements are
visible. Diagrams include use case dia-
grams, class diagrams, object diagrams,
sequence diagrams, collaboration dia-
grams, state-chart diagrams, activity dia-
grams, component diagrams, and deploy-
ment diagrams. Some key primitive model
elements are states, transitions, signals,
classes, class roles, attributes, and opera-
tions [1].

The object-oriented principles (OOP)
used for the UML design and develop-
ment are based on the idea of creating
self-contained modules that describe
desired functionality and interact with oth-
ers through interfaces in order to create a
complete system. To achieve this goal,
some of the techniques available with
OOP include encapsulation and abstrac-
tion [2, 3].

Encapsulation describes the grouping
of related functionality, which separates
implementation from interface. The
implementation details are hidden from
outside users, who can only interact with
objects of the class through the interface.
In this way, the implementation can be
more easily changed.

Abstraction provides characteristics of
the object or a class that are unique and
creates specific defined boundaries with
respect to the currently desired solution.
Abstraction allows a way of managing sys-
tem complexity by hiding irrelevant
details. For example, it allows for develop-
ment to continue if a class is just a place-
holder for future implementation.

UML Elements for Real-Time
Systems Design
Designing real-time systems is a challenge.
To address this challenge, an active class
model element was introduced in UML.
The purpose of this element was to help
simplify both the design and the imple-
mentation.

The active class model element con-
sists of a communication structure
description and a behavioral description.
The communication structure is described
using a collaboration diagram that shows
the ports through which it sends and
receives messages to and from other active
classes. The behavior is described using a
state transition diagram that shows how
the active class acts and reacts to its envi-
ronment1. In other words, the active class
is a stand-alone capsule of software that
talks to its environment through ports
(specified in the structure diagram), and
performs actions as it transitions through a
sequence of states (specified by the state
diagram).

The characteristics of a run-time sys-
tem (RTS) object and the UML active
class were determined to simplify the
process of real-time software design and
implementation. In addition, by encapsu-
lating calls to the operating system of the
target platform within the RTS, the auto-
generated implementation of the UML
design can be made largely platform-inde-
pendent.

The UML language is complete
enough to allow the creation of auto-
generated code that implements the
design. The code can be generated from
the system description of the model
through the use of diagrams and other
model elements [4].

Overview of WYSIWYG
GUI Tools
The WYSIWYG concept is a well-known
technique that states that the end-product
will look, act, and behave the same way as
it does being designed on-screen from the
developer to the end-customer look and

Using WYSIWYG GUI Tools With UML

This article will discuss the merging of Unified Modeling Language (UML) with “what you see is what you get” (WYSIWYG)
graphical user interface (GUI) tools. The topics presented—and discussion of an example with benefits and hazards—will
show that the merged solution can increase productivity and provide an improved rapid prototyping platform.

Martin Guldahl
309th Software Maintenance Group

“The UML language is
complete enough to
allow the creation of

auto-generated code that
implements the design.

The code can be
generated from the

system description of the
model through the use of

diagrams and other
model elements.”

SM Team Software Process and TSP are service marks of
Carnegie Mellon University.

® CMMI is registered in the U.S. Patent and Trademark
Office by Carnegie Mellon University.

Rapid and Reliable Development

Ilya Lipkin
677th Aeronautical Systems Group

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JUN 2009 2. REPORT TYPE

3. DATES COVERED
 00-05-2009 to 00-06-2009

4. TITLE AND SUBTITLE
Using WYSIWYG GUI Tools With UML

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
77th AES Wing,677th Aeronautical Systems Group,2300 D Street, Bldg
32,Wright-Patterson AFB,OH,45433-7249

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

5

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Using WYSIWYG GUI Tools With UML

May/June 2009 www.stsc.hill.af.mil 5

feel. Currently, there are many tools and
products on the market that make the
development of the GUIs easier for
embedded applications.

One of these tools is the Tilcon IDS.
Although there are other tools—such as
Altia Design and the Virtual Avionics
Prototyping System, which are in many
ways similar to Tilcon—the choice over
other similar tools was determined using a
CMMI Decision Analysis and Resolution
(DAR) matrix [5].

The DAR was based on criteria such as
customer service and technical support by
the vendor, operating system neutrality,
cost per use, development seat licenses,
performance of the solution, ease of
development, and training costs. Each was
assigned a weight factor with respect to
the importance for the project. In addi-
tion, a small prototype was implemented
with some of these tools to serve as an
input for the DAR. The winning solution
was selected from the highest cumulative
score.

The UML solution was designed with
the idea of neutrality to the GUI develop-
ment tool. Therefore, if the choice of
Tilcon no longer becomes a best-fit selec-
tion, the impact to the UML back-end
solution will be minimal when going with
an alternative GUI.

The Tilcon IDS (see Figure 1) consists
of three main components:
1. The Tilcon Interface Builder. The

Tilcon Interface Builder is a WYSI-
WYG GUI design tool2. An interface
is created by drag-and-drop of high-level
GUI objects like menus, buttons, text
boxes, labels, etc. Each of these
objects has properties associated with
it. These properties, such as color,
font, size, meter range, etc., can be tai-
lored to meet a given requirement. As
interface development is applied to
each object so the application pro-
gramming interface (API) can manipu-
late it, the resulting GUI design is
saved in a .twd file. The Interface
Builder does not require any program-
ming skills to construct a GUI. Non-
programmers such as graphic artists
can use the Interface Builder to con-
struct a GUI. It is highly recommend-
ed that a naming convention be fol-
lowed so that programmers using the
API can access the objects in a consis-
tent way.

2. The Tilcon Embedded Vector
Engine (EVE). The EVE is a plat-
form-specific engine that renders the
graphical interface. It reads the same
file as the Interface Builder and
ensures that the GUI is exactly the

same as seen in the Interface Builder.
The EVE runs as a separate process
from the application and manages all
user events (button presses, mouse
clicks, etc.) and handles the screen dis-
play. This engine is available for many
embedded operating systems, such as
VxWorks.

3. The Tilcon API. An API is provided
to connect the EVE to the application
(see Figure 1). The API starts and
stops the EVE, facilitates communica-

tion between the application and the
GUI objects, and allows objects to be
created, displayed, modified, or delet-
ed. No low-level, platform-specific
graphic calls are required; all of that
work is handled by Tilcon [6].

Merging of UML and a
WYSIWYG Interface
Now that the tools have been presented, it
is time to discuss the benefits and com-

State Description Attributes

Initial System not running Timer event set to 30 seconds

Green On timer time out event go to
(goYellow) Yellow

Timer event set to 45 seconds

Yellow On timer time out event go to
(goRed) Red

Timer event set to 10 seconds

Red On timer time out event go to
(goGreen) Green

Timer event set to 30 seconds

Table 1: State Specification Template for the Sequence of Event for the Traffic Light (SEI) [4]

Figure 1: Tilcon IDS

Initial

goRed

goYellow

Red

Yellow

Green

CurrentVehicleSpeed BarometerPressure

MonitorSpeed MonitorEnvironment

goGreen

Figure 2: Traffic Light Advanced Monitoring System States

Rapid and Reliable Development

6 CROSSTALK The Journal of Defense Software Engineering May/June 2009

mon pitfalls of the approach. To this end,
we will demonstrate a simple example
using a standard traffic light with some
basic gauges for the GUI presentation.

For example, consider Table 1 (on the
previous page), which is an SEI State
Specification Template [7]. The require-
ments for the traffic light state that in addi-
tion to correctly changing the lights from
green to yellow to red and back to green, it
will also monitor speed and pressure.

The UML solution shown in Figure 2
(on the previous page) is completely lan-
guage- and platform-neutral; because the
traffic light is drawn in UML, there is no
code associated with it (with the exception
of event descriptions). Therefore, it is left
for the auto-code generation engine to
translate UML to a destination language
or platform of choice; in this case, C++
[8]. As a result, the amount of source code
written is less than 20 lines of code for
both the functionality of the traffic light
and monitoring systems. The source code
written in C++ consists of timer com-
mands in the form “timer.informIn(sec-
onds)” and Tilcon API calls to the graph-
ical objects in the form of “TRT_Set

Value(objectID, value).” The Tilcon API
calls can be replaced one-to-one with
other GUI API calls such as from Altia’s
“AtSendEvent” if one chooses a different
front-end solution.

The structure diagram in Figure 3
represents system events that are used to
trigger actions on the state diagram. As a
result, the stimulus to these events is pro-
vided by the system itself in the case of
the timer port; as well, external entities
such as a radar detector or an environ-
mental sensor feed back data updates for
the other ports.

When merging WYSIWYG GUI
tools with UML on a complex develop-
ment project, it is of the utmost impor-
tance to exercise good OOP and spend
effort to simplify and abstract the WYSI-
WYG GUI as much as possible from the
rest of the UML solution. Abstraction
will allow for better unit testing as it is
possible to create wrappers that can sim-
ulate operator display and input.

The GUI in Figure 4 was quickly cre-
ated with the Tilcon Interface Builder.
This tool supports a drag-and-drop
development methodology to create an
interface, which consists of several
graphical objects listed in Figure 5. The
figure lists the object structure with the
type and identifier of each object. The
entire interface was created and tested
without any UML or programming effort
or an application back end.

In this example, the description of
the mechanics of the speed gauge, pres-
sure gauge, and traffic light animation
can be used to demonstrate the effective-

ness of this approach at the front end.
Therefore, it is of interest to discuss how
these objects were created in the Tilcon
editor.

Traffic Light
The image for the traffic light in Figure 4
(created in Adobe Photoshop) was
imported into the Tilcon Interface
Builder and placed into a state object.
One of many types available in the
Interface Builder, this object type can dis-
play a different image depending on its
state, which can be changed with mes-
sages sent to it through the API.

Using Adobe Photoshop with the
Tilcon Interface Builder allows for an
improved visual experience for the end
customer, as graphics generated are gen-
erally more visually appealing at a frac-
tion of the cost otherwise incurred if this
was done in any other way (e.g., using
C/C++).

In order to effectively identify the
object for the UML application back end,
the use of an API-unique ID such as
“StateTrafficLight” needs to be assigned
for the screen name. It is important to
note: As more complex GUIs with hun-
dreds of graphical objects are created in
the Tilcon editor, a strict adherence to a
naming convention will be required.

Speed Gauge
The speed gauge is a meter object that
was created directly in the Interface
Builder. This object is a standard devel-
opment component that requires a mini-
mum effort of customization. A meter
object has many attributes—the range,
alarm regions (green and red areas in the
scale), tick marks, fonts, and colors—that
were all entered in the Interface Builder.
For this example, the previously men-
tioned attributes were slightly adjusted
for the visual presentation.

Speed Gauge Needle
The needle for the speed gauge is a needle
object that was also created from the stan-
dard Interface Builder object type. The
needle selected is a predefined object type.
Several predefined styles are also available
or a custom style can be imported.

Pressure Gauge
Like the speed gauge, the pressure gauge
is a standard object available in the Tilcon
Interface Builder. It is an object of type
“FillMeter” that represents meter posi-
tion with a fill amount. The modifica-
tions for visual effects were primarily the
adjustment of the visual width, font
color, tick marks, and range.

Figure 4: Example GUI

+ / SpeedRadar
: speedingEvent

+ / Timer
: Timing

+ / WeatherSensor
: environmentalEvent

Figure 3: Traffic Light Input Structure

Using WYSIWYG GUI Tools With UML

May/June 2009 www.stsc.hill.af.mil 7

Speed and Pressure Label
The speed and pressure labels are stan-
dard label-type objects. The ID, text,
font, font size, and color are all attributes
that were entered into the Interface
Builder. The primary effort in the case of
the labels was to ensure their proper
alignment with their respective objects.

Once the graphical objects are
entered into the Interface Builder, the
GUI functionality can be verified with
the Interface Builder operation “Run
Test... .” This mode lets the GUI design-
er verify that the objects operate proper-
ly by animating their behavior without
the need for a back-end solution; in this
case, UML.

What Have We Gained?
The merged solution of a UML and
WYSIWYG GUI development tool
allows for several advanced flexibilities
for the software creation effort. Most of
those flexibilities are geared toward rapid
development and prototyping. The sepa-
ration between the front-end WYSIWYG
GUI and a back-end UML provides the
kind of platform development combina-
tion that can bring together technical and
non-technical development efforts seam-
lessly.

Non-Programmers Collaboration
Using a WYSIWYG GUI design tool, it is
possible to outsource the generation, pro-
totyping, and user interaction analysis
effort to usability experts, graphic artists,
and other non-programmers. They no
longer need to know anything about UML
or any programming language. As well, a
GUI object-naming convention should be
followed for the project. This will allow
programmers to access the objects in a
consistent way [9].

Quick Prototyping
With WYSIWYG GUI tools, it is possi-
ble to adjust the user interfaces in a mat-
ter of minutes—even in the field—rather
than hours or days with a comparable
native programming solution. It also pro-
vides a way to easily evaluate different
approaches that otherwise would have
taken too long to develop.

Platform Neutrality
The development effort for the GUI is
identical regardless of the deployment
platform. Whether the target platform is
Windows, Linux, VxWorks, or another
operating system, the same solution is
available and executes identically on the
operating systems previously mentioned.

Therefore, it is possible to deploy the
same solution to various other platforms.

Ease of Unit Testing
WYSIWYG GUI development tools
allow for automatic editor-based debug-
ging of the GUI designs such that the
prototype solution is debugged in terms
of visual actions and presentations to the
operator. This allows for software devel-
opers to concentrate more on the UML
part of the solution and spend more time
enhancing functionality and quality.

What Have We Risked?
As one might expect, there are always
drawbacks to any solution. Over the
course of the project, several pitfalls of
this merged tools approach have been
identified. Here are some of the key
issues:

Merging of Design Files
One of the features that has been sorely
missed was the ability to merge GUI
design files. Because the design resides in
a binary file format, the source control
tool could not merge them. Therefore,
when multiple developers work on the
GUI, developers have to be extra vigilant
when checking in files to avoid overwrit-
ing each other’s changes.

WYSIWYG GUI Editing vs.
UML Development
There is a fine line between what is con-
sidered GUI interface functionality and
the UML back-end functionality. There-
fore, it is the call of the system architect
to identify the separation criteria. When
developing in a WYSIWYG GUI tool, it
is easy to get carried away with point-
and-click, advance animation, and pre-
sentation development. While these are
great options for some projects, they
might not be for others. Some of the
functionality that belongs in the UML
part of the project should not be moved
over to the WYSIWYG GUI develop-
ment tool.

Let’s say someone needs to rapidly
change more than 100 objects or text ref-
erences at the same time on the screen.

One approach is to use the WYSIWYG
GUI development tool, which results in
100 point-and-click activities; another is
to implement the whole thing in the
UML back-end for a loop, which can per-
form the same task in three lines of code.
The risk of misplaced functionality can
easily wipe out the gains of the merged
solution.

Limited Development Language
Support
Most of the WYSIWYG GUI tools have a
predefined set of software languages that
they support. The selection of the WYSI-
WYG GUI front-end might force the
choice of a software language that is not
in the best interest of the project, or same
language translation must occur. For
example, if someone wants to use Visual
Basic .NET with a WYSIWYG GUI tool
(such as Tilcon or Altia), they will find that
it will not be supported and, therefore, be
forced to reconsider going with C/C++.
The implication of code generated from
UML is that it forces a restriction to what-
ever language the UML tool generates and
that this language must be compatible
with the API supported by the WYSI-
WYG tool.

Conclusion
The example presented in this article
shows that using UML for the back-end,
run-time engine development and a
WYSIWYG GUI builder tool for the
front-end graphics development can result
in overall gains in productivity and ease of
prototyping. The event-driven nature of
real-time UML facilitates straightforward
integration with an event-driven GUI; to
some extent, both solutions are platform-
neutral. The example demonstrates the
ease of these concepts and the integration
and simplification of the problem.

One of the key benefits of this
approach is that non-programmers can
utilize the WYSIWYG GUI design tool to
create the GUI. Requirements can be
expressed in UML, and these descriptions
can be used in the design and implemen-
tation of the system. As a result, the devel-
opment of a complex system is simplified,

Figure 5: Example Object Hierarchy

Rapid and Reliable Development

8 CROSSTALK The Journal of Defense Software Engineering May/June 2009

in turn minimizing risk, reducing develop-
ment costs, and shortening schedules.u

References
1. Sanderfer, Lynn. “How and Why to

Use the Unified Modeling Language.”
CrossTalk June 2005.

2. Bohn, Christopher A., and John
Reisner. “A Gentle Introduction to
Object-Oriented Software Principles.”
CrossTalk Oct. 2006.

3. Dennis, Alan, Barbara Haley Wixom,
and David Tegarden. Systems Analysis
and Design With UML Version 2.0:
An Object-Oriented Approach. 2nd
ed. New York: John Wiley & Sons,
Incorporated, 2004.

4. Lipkin, Ilya, and A. Kris Huber. “UML
Design and Auto-Generated Code:
Issues and Practical Solutions.”
CrossTalk Nov. 2005.

5. Chrissis, Mary Beth, Mike Konrad, and
Sandy Schrum. CMMI ® Guidelines for
Process Integration and Product
Improvement. 2nd ed. New York:
Addison-Wesley Professional, 2006.

6. Tilcon Software Limited. “Tilcon
Interface Development Suite White
Paper.” May 2008 <www.tilcon.com/
manual/Tilcon_WhitePaper.pdf>.

7. Humphrey, Watts S. A Discipline for
Software Engineering. New York:
Addison-Wesley Longman, Limited,
1995.

8. Webb, David R., Ilya Lipkin, and
Evgeniy Samurin-Shraer. “Designing
in UML With the Team Software
Process.” CrossTalk Mar. 2006.

9. Altia, Inc. “How Medtronic Used Altia
to Prototype and Deploy Custom User
Interfaces for Medical Devices.” 12
June 2008 <www.altia.com/down
loads/case_studies/Medtronic_Case_
Study.pdf>.

Notes
1. In the Rational Rose RealTime tool,

active classes are called capsules, and the
associated collaboration diagrams are
called structure diagrams.

2. The Tilcon Interface Builder (see
<www.tilcon.com/products/interface
-development-suite/tilcon-interface
-builder> to learn more) is not to be
confused with the Interface Builder
application for the Apple Mac OS X.

About the Authors

Ilya Lipkin is a project
engineer for the 677th
AESG/EN Global Hawk
Simulations at Wright
Patterson AFB. His cur-
rent research interests

include artificial intelligence, human
knowledge capture and analysis, neural
networks, fuzzy logic, user interface
design, software engineering, UML, sup-
ply chain control, and customer relations
management. Lipkin has a bachelor’s
degree in computer engineering, an MBA
in operations management, and a master’s
degree in computer engineering. He is
currently a doctoral student at the Uni-
versity of Toledo’s College of Business
Administration.

77th AES Wing
677th AES Group
2300 D ST, BLDG 32
Wright-Patterson AFB, OH
45433-7249
Phone: (419) 290-6017
E-mail: BookWormUT

@yahoo.com

Martin Guldahl is an
electrical engineer for the
Common Aircraft Porta-
ble Reprogramming Equip-
ment program, part of
the 520th Software

Maintenance Squadron, 309th Software
Maintenance Group at Hill Air Force
Base, Utah. He has more than 15 years
of experience in a variety of industry
and government positions. Guldahl has a
bachelor’s degree in electrical engineering
and has taken graduate level computer
science coursework from the University
of Utah. His areas of interest include
UML, C++, Verilog, and Perl.

520 SMXS/MXDED
7278 4th ST, BLDG 100
Hill AFB, UT 84056
Phone: (801) 775-4397
E-mail: martin.guldahl@hill.af.mil

